导数的几何意义公式是怎样的呢?同学清楚吗,不清楚的来小编这里瞧瞧。下面是由出国留学网小编为大家整理的“导数的几何意义公式是怎样的”,仅供参考,欢迎大家阅读。
导数的几何意义公式是怎样的
导数的几何意义公式即作图表现出的公式。为某点的切线,若表现在公式F(X)中,则表示为F'(X)。即为公式F(X)中变量X的变化趋势及变化速率。反映了自变量X与因变量F(X)的变化规律,几何意义通常可直观的表示出其变化趋势。
拓展阅读:三角函数诱导公式的作用和用法
一、三角函数诱导公式的作用:可以将任意角的三角函数转化为锐角三角函数。例如:
1、sin390°=sin(360°+30°)=sin30°=1/2.
2、tan225°=tan(180°+45°)=tan45°=1.
3、cos150°=cos(90°+60°)=sin60°=√3/2.
二、三角函数诱导公式的用法:
1、公式一到公式五函数名未改变, 公式六函数名发生改变。
2、公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
3、对于kπ/2±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)