我们特地为你收集整理“五年级数学教案”,敬请参阅本文。每当老师走进课堂,都会随身带一份教案,课堂教学之中,预备教案是教师的义务。写教案的过程也是思维连贯发散的过程。
五年级数学教案 篇1
教学目标:
1、通过比较异分母分子不同分数的大小,初步理解通分的意义;
2、在逐步探索通分的过程中,深刻体验主动发现问题、解决问题的成就感,选择适合自己操作的方法解决有关问题。
教学重点:主动探索掌握通分的方法。
教学难点:能很快找出原来几个分母的最小公倍数作公分母。
教学过程:
一、复习铺垫,创设情境
1、求最小公倍数:4和6、8和9、9和27
2、把下面的分数按分母相同或不同进行分类:1/5、2/7、3/4、5/7、7/10
3、化成分母是20而大小不变的分数:、、
谈话:下面,我们继续来学习关于分数的知识。
二、师生探究
1、教学例4。
(1)出示:把3/4和5/6改写成分母相同而大小不变的分数。
(2)学生先独立完成,再小组讨论:你是怎样改写的?
(3)大组交流:哪一组来说说本组的想法?其他小组可以质疑、补充。
(4)观察分析:这两种方法共同经历了一个怎样的过程?(将异分母分数转化成与原来分数相等的同分母分数的过程。)
2、理解通分的意义:把几个分母不同的分数(也叫异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。
3、认识公分母:通分过程中,相同的分母该叫做这几个分数的公分母。
4、想一想:
(1)通分是一个怎样的过程?
(2)通分后的分数与原来相应的分数比,大小怎样?(不变)
(3)观察例4的通分过程,你更喜欢哪一种通分的方法?为什么?(12,比较简便)
5、启发:通分时,一般用原来几个分母的最小公倍数作公分母。
6、试一试:先找出1/6和4/9的公分母,再把这两个分数通分。
可以先让学生根据要求完成填空,再通过讨论进一步明确通分的方法、步骤和书写格式。
7、练一练:通分。
一要提醒学生用每组中两个分母的最小公倍数作为公分母;
二要提醒学生规范地书写通分过程。
三、巩固深化
1、完成练习十二第1题
先根据每个图中的涂色部分分别在相应的括号里写出分数,然后把这两个分数通分,并把通分的结果写下来,最后在图中画一画。
2、完成练习十二第2题
学生独立判断并口答,集体订正。
3、完成练习十二第3题
练习时让学生把错的改正,把不够简单的继续约成最简分数。
4、发散训练:1/15()1/6
四、全课总结
你有哪些收获?(学生自由发言,提出疑问)
五、布置作业
练习十二第4题。
教学后记
,并把通分的结果写下来,最后在图中画一画。
2、完成练习十二第2题
学生独立判断并口答,集体订正。
3、完成练习十二第3题
练习时让学生把错的改正,把不够简单的继续约成最简分数。
4、发散训练:1/15()1/6
四、全课总结
你有哪些收获?(学生自由发言,提出疑问)
五、布置作业
练习十二第4题。
教学后记
五年级数学教案 篇2
《折线统计图》
知识背景和目标定位:
《折线统计图》是在学生已经掌握了收集,整理数据并制成统计表(单式和复式)和条形统计图(单式和复式)来表示统计结果,并能根据统计图表解决简单的实际问题,了解了统计在现实生活中的意义的基础上了解和掌握的一种新的统计图。
基于以上认识,把《折线统计图》的教学目标定位于以下几点:
1、认识折线统计图,并知道其特征。
2、能从折线统计图中发现数学问题,同时能够依据数据变化的特征进行合理的推测。
3、通过对数据的简单分析,进一步体会统计在生活中的意义和作用
教学设计:
一、创设情境
1、课件出示相山公园图片
师:知道这是哪儿吗?看到这些画面你想说点什么?
预设生:人多、人山人海………
2、由统计表提出问题
师:是的,浏览的人真得很多,为了使大家能更清楚地了解和分析这几年浏览相山公园的人数的情况,你认为可以用哪些方法来表示人数?
预设生:统计表,条形统计图……
仔细观察,你能从统计表中知道些什么?
学生回答
师:老师这儿还带来了一个问题,在相邻的两个年份()年到()年浏览人数增加最快?(课件出示)
质疑:我们能不能不计算,换一种方式就可以很直观地看出()年到()年人数增加最快?
出示条形统计图,提问:这幅统计图是用什么表示每年浏览的人数?这也不能很直观的看出哪年到哪年人数增加最快.
师:我在公园里还看到这样一幅统计图(出示折线统计图)
二、探究新知
1、初步感知:
师:在这幅统计图中,横轴代表什么?纵轴代表什么?
每一年的浏览人数在这幅统计图中都能找到吗?
这幅统计图是通过什么来表示每年的浏览人数的?(点)师板书:点
2、深入探究
带着三个问题来研究折线统计图
五年级数学教案 篇3
教学内容:
义务教育课程标准实验教科书《数学》(新世纪版)五年级下册第六单元第82-83页《包装的学问》。
教材分析:
本课教学内容是在学生掌握了长方体特征及表面积计算等相关知识的基础上,进一步探究几个相同长方体组合成新长方体的多种方案以及使其表面积最小的最优策略。教材把《数学与购物》这一系列数学实践活动安排在第六单元后,主要意图是通过这样一系列与生活紧密联系的实践活动,培养学生综合应用所学的知识解决实际问题的能力。在这一系列实践活动中,教材安排了三个内容,主要涉及数与代数、空间与几何两部分知识,在解决生活实际问题的过程中,分别培养了学生的估算意识、计算中的最优策略以及多个长方体叠放后使其表面积最小的最优策略。本课教学内容是这一系列实践活动中的最后一个内容。
包装问题在日常生活与生产中经常遇到,教材创设包装的情境,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它不仅培养学生的节约意识,更体现了数学的优化思想。有助于培养学生空间观念,提高解决实际问题的能力,感受数学与实际生活的密切联系。同时有利于学生感悟数学思想,积累数学活动经验。
学情分析:
1、学生已有的知识基础。
在本课学习之前,学生已熟练掌握了长方体、正方体的特征,能准确、迅速地计算出单一物体的棱长、表面积、体积,能把几个相同的正方体组合成新的正方体。初步接触了由两个相同的正方体拼成一个长方体后表面积发生的变化。在第二单元探索活动《露在外面的面》中,又训练了学生有序的观察能力和计算露在外面的面 面积的能力。
2、学生已有的生活经验。
学生大都接触过物品的包装,能清楚地意识到用包装纸包装起来的部分就是求物体的表面积。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方案的多样化与策略的最优化可能存在问题,通过动手操作大多数学生可以得到由4个相同长方体组合成新的长方体时的六种拼摆方案,但思维可能会无序,对于方法的归纳和总结也存在困难。因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同归纳总结,有助于培养学生思维的有序性。
五年级数学教案 篇4
教学目标:
1、学生借助生活中的实例,学会用字母表示数,体会用字母表示数的必要性和重要性。在具体的情境中能利用字母表示数进行数学表达和交流。
2、在探索现实世界数量关系的过程中,体验用字母表示数的简明性,增强数学意识,初步体会归纳猜想、数形结合等数学思想方法在数学中的应用。
3、学生在自主探索、合作交流中获得成功的体验。
教学重点:
理解字母表示数的意义。
教学难点:
探索规律,并用字母表示简单的数学规律。
教学过程:
一、联系生活,体会字母在生活中的广泛应用
今天我们要上一节与字母有关的数学课,生活中你见到过与字母有关的事物吗?(出示下列图案。)
(音乐课本中“1=F”表示F大调F音唱“1”;扑克牌中的字母表示固定的数……)
字母的用处非常大,数学上我们经常用字母运算或表示数学规律,今天我们就来研究字母在数学中的运用。
设计思路:出示图案,联系乐理知识,在于激活学生的思维,实现学生生活经验与学习内容的和谐统一。
二、自主探索,领悟新知
活动(一):儿歌接龙,初次尝试用字母表示数。
1、由儿歌“1只青蛙1张嘴,2只青蛙2张嘴,3只青蛙3张嘴……”让学生说说发现了什么。
2、(师生)由慢到快儿歌接龙,引出“n只青蛙n张嘴”。
师:n是什么?它表示什么?
3、板书课题:用字母表示数
设计思路:用字母表示数意味着将把学生从数的领域领入代数的世界,这将促使学生的数学知识结构和数学观念、方法产生质的飞跃,同时用字母表示数又是用代数方法解决问题的基础。因此,设计这样的活动,自然而然引出用字母表示数;通过活动,让学生初步感知字母在不同的情况下可以表示一个确定的数,还可以表示任意数(甚至式)。下一个活动还将渗透字母也可以表示一个在一定范围内的数。
活动(二):推想(师生)年龄,体验字母的妙用。
1、猜年龄。
(1)让我猜猜你们今年有多大了?(大多数同学今年10岁。)
(2)那你们知道刘老师今年有多大吗?猜猜看。
(3)刘老师透露一点信息:刘老师比班上大多数同学大20岁。现在你知道老师有几岁了吗?你是怎样知道的?
2、推想师生年龄。
(1)想一想当你们1岁时,刘老师有几岁?怎样列式?
(2)下面我们来做个游戏。让我们进入时空隧道:大家可以回到从前,也可以展望未来,推算当你几岁时,刘老师是多少岁。
(3)交流汇报,教师板书。
(4)用字母表示师生的年龄。
(5)讨论a和取值范围。
(6)如果用字母b表示老师的年龄,那么同学们的年龄可以怎样表示呢?你是怎么想的?与同桌说一说。
设计思路:这一教学环节设计从具体的算式抽象出用字母表示数量关系,使学生感受到数学的符号语言比文字语言更为简洁明了,体现用字母表示数的概括性、简洁性。通过积累、体验和认识,不断提高学生的学习兴趣和理解所学知识的能力。
活动(三):数数猜猜,发现规律。
出示三角形图。
(1)搭一个三角形,要用几根小棒?搭两个互不连接(下同)的三角形呢?
(2)如果也让你搭三角形,你准备搭几个?要用几根小棒?
(3)观察:搭了这么多三角形,你有什么发现吗?
如果有足够的小棒,我们可以无限制地搭(三角形)下去吗?你能想个好方法,把我们搭三角形所需小棒数(3m根)简单地表示出来吗?
(4)我们知道m在这里表示三角形的个数,那么m可以表示几个这样的三角形?(m在这里表示除0外的任意自然数。)
(5)自学教材“小博士的话。”(字母表示数时的简写方法。)
设计思路:安排学生自学课本,培养学生的自学能力,逐渐养成阅读教材的习惯。
活动(四):小小“审判官”(判断下列各式的写法是否正确。)
a×4可写成a4()(数与字母相乘时,数一般写在字母前面。)
5×6可写成56()(数与数相乘时,乘号不能省略不写。)
b+2可写成2b()(数与数相加时,加号不能省略不写。)
a×b=ab()(字母与字母相乘时,乘号可以省略不写。)
1×d=d()(1与任何数相乘得原数。)
三、应用新知,拓展提高
活动(一):续儿歌。
1只青蛙1张嘴,2只眼睛4条腿;
2只青蛙2张嘴,4只眼睛8条腿;
3只青蛙3张嘴,6只眼睛12条腿;
……
()只青蛙()张嘴,
()只眼睛()条腿。
小组交流:你能用一句话说一说这首儿歌吗?
师:26个英文字母都可以用来表示数,但由于英文字母“O”在书写形式上非常接近阿拉伯数字“0”,所以在用字母表示数时,通常不选择英文字母“O”。
活动(二):一段有趣的话。
小明和妈妈乘公交车去商场购物,车上原有30人,汽车靠站时,下去x人,又上来Y人;汽车继续行驶,小明和妈妈来到商场,一双袜子8元钱,妈妈买了a双,小明买了m米彩带,回家做手工时把它平均剪成6段。
小组讨论:根据这段话可以提出哪些数学问题?怎样解答?
设计思路:设计有价值的讨论题,让学生有话想说,使学生在自主探究的空间中达到对本节课所学知识的应用与巩固。
四、数学小知识介绍
1、在古代埃及《兰特纸草书》中用x代表数,这是目前已知的人类最古老的使用字母的记载。
2、介绍数学家。
五年级数学教案 篇5
一、教材内容:
人教版小学数学五年级下册44页
二、学情分析
五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。
三、教学目标
1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。
教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
四、 教学准备
魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡
五、教学过程
一、复习引入
(一)、同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?
学生:有8个顶点、12条长度相等的棱、6个大小相等的面。
教师随机板书正方体的特征。
【设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】
(二)、出示①②③组图,它们分别是由多少块小正方体组成的吗?
生:图①2×2×2=8(块)
图②3×3×3=27(块)
图③4×4×4=64(块)
师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?
生:不是,有的会被涂上颜色,有的不会被涂上颜色。
师:涂色的面数有几种情况?
学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。
教师随机板书:3面 两面 一面 没有涂色
师:今天我们就一起来探究正方体表面涂色的问题——探究图形
教师板书课题。
二、探究新知
(一)探究三面涂色的问题
师:三面涂色的小正方体分别有多少块呢?
生观察回答:图①有8块、图②有8块、图③有8块。
师:怎么都是8块?分别在哪里?
生:都在大正方体的8个顶点上。
师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?
生:也是8块。
师:这跟什么有关系?
生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。
教师随机板书:顶点
(二)探究两面涂色的问题
师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。
小组合作提示:
1、四人合作,利用学具探究两面涂色的小正方体有多少块?
2、试着将发现的结果用列式的方法表示在小组探究卡的表格中
小组探究
小组汇报
生:一面有4块,6面一共有12块。
师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的话,用这种方法还方便吗?还有其他的方法吗?
生:一条棱上去掉三面涂色的2块剩下的一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.
师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?
生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.
师:那棱长是5块、6块的呢?怎样列式计算?
生:(5-2)×12=36块 (6-2)×12=48块
师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?
生:(n-2)×12
师板书:在棱上 (n-2)×12
(三)探究一面涂色的问题
师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。
小组合作探究
小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)
生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。
师:你是怎么知道一面有1块、4块一面涂色的呢?
生:数的
师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?
生:有局限性
师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?
生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。
生:③号图形一条棱上去掉三面涂色的剩下的两块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。
师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?
生:(5-2)×(5-2)×6=54块
(6-2)×(6-2)×6=96块
师:用字母怎么表示?
生:(n-2)×(n-2)×6=(n-2)2×6
(四)探究没有涂色的问题
师:没有涂色的小正方体有多少块呢?怎么计算?
生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。
师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?
生:在里面
师:有什么办法知道呢?
生:拆开看一看
师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数
师:现在你知道有多少块没有涂色了吗?
生:②号图形有一块没有涂色
③号图形有8块没有涂色的
师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。
组织学生观看动画过程。
生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。
生:③号图形每条棱上有4块,去掉两块三面涂色的剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。
师:真棒!你能试试棱长是5、6块的吗?
生:(5-2)×(5-2)×(5-2)=27块
(6-2)×(6-2)×(6-2)=64块
师:用字母怎么表示?
生:(n-2)×(n-2)×(n-2)=(n-2)3
三、知识应用
出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?
学生计算汇报
四、课堂小结
通过这节课的探究,你能说说你用什么方法学会了本节课的知识?
五、版书设计
探索图形
顶点上 棱上 面上 中心
正方体的特征:8个顶点 12条棱 6个面
三面 两面 一面 没有涂色
8 (n-2)×12 (n-2)2×6 (n-2)3
五年级数学教案 篇6
方程是《数学课程标准》数与代数中式与方程部分的内容,无论是原《大纲》还是《数学课程标准》,方程的内容都占有重要的地位,原《大纲》提出的内容是:用字母表示数。简易方程(axb=c,axbx=c)。列方程解应用题。教学要求是会用字母表示数、常见的数量关系、运算定律和公式;初步理解方程的意义,会解简易方程;初步学会列方程解应用题。《数学课程标准》的具体标准内容是:(1)在具体情境中会用字母表示数。(2)会用方程表示简单情境中的等量关系。(3)理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3)。虽然都是三条,但两者在具体的要求和内含上有所不同。首先,《数学课程标准》强调了要在具体的情境中用字母表示数,主要是考虑到用字母表示数是数学符号化的重要内容,从具体情境中抽象,概括出含有字母的代数式是数学建模的重要过程。借助学生熟悉的具体事物,认识用字母表示数,不但使学生了解数学符号的作用,更重要的是,渗透初步的数学建模的思想。其次,《数学课程标准》不再单纯要求学生列方程解应用题,而是强调会用方程表示简单情境中的等量关系,突出了方程的数学模型思想。让学生在用方程表示具体等量关系中理解方程的实际意义。方程是刻画现实世界数量关系(相等)的数学模型,在传统的教学中,注重的是有关的概念和技能,如方程的等价性、方程解的讨论、方程的解法等。历来被看作数学教学的重点和难点,教学中重视给学生分析数量关系,机械的列出方程,解答问题,更有甚者,把问题进行分类,并就某一类问题提供主要的等量关系和解题套路。如,行程问题,浓度问题,工程问题等,这样的教学缺乏探索性、研究性和挑战性,学生体会不到方程是现实世界的数学模型,更没有经历到数学建模的过程,应用意识和实践能力的培养也就成了空话。《数学课程标准》把会用方程表示简单情境中的等量关系单列出来,就是要强调方程在数学教育中的作用,让学生感受方程和实际问题的联系,体会到方程是刻画现实世界的模型,领会数学建模的思想和基本过程,提高解决问题的能力和自信心。第三,《数学课程标准》强调了利用等式的性质解简单的方程。而不是原《大纲》教材中的利用加、减、乘、除各部分间的关系作为解方程的依据,突出了方程的代数思想以及和初中知识的衔接。鉴于上面的变化,新教材与传统教材在知识建构思想和内容编排上也有着不同的特点。
第一、教材安排和设计思路不同。传统教材中,方程的内容一般分三个小节(1.用字母表示数;2.简易方程;3.列方程解应用题)集中安排在五年级上册。在学习用字母表示数以后,先学解方程的方法,再学列方程解应用题。新教材与传统教材相比,首先把式与方程的内容分两个单元分别安排在四年级下册和和五年级下册(本单元)。另外,打破先学解方程的方法,再学列方程解决应用问题的教材体系,在学生认识、了解等式的基本性质以后,把学习方程的解法和解决应用问题整合在一起。选择学生熟悉的、感兴趣的事物和问题。如,手写字和电脑打字问题、猜数奥秘、向山区小朋友捐书等。让学生在具体问题情境中,找到具体问题中的等量关系,进而列出方程,学会求解方法。教材设计的基本思路是:呈现问题情境--数学模型(找等量关系、列方程)--尝试解答--互动学习。
第二、解方程的依据不同。传统教材中,把小学阶段加、减、乘、除各部分间的关系作为解方程的依据,初中则用等式的基本性质解方程。这种小学、初中解方程思路和方法的不一致,使小学阶段的学习非但起不到打基础的作用,在一定程度上还增加了初中学习解方程的难度。新教材按照《数学课程标准》的要求,小学、初中解方程的依据和思路一样-用等式的基本性质解简单方程。考虑到学生还没有学习有理数的运算,本套教材删去了a-x=b、ax=b的方程基本类型。
第三、列方程解应用问题的内容不同。传统教材中,列方程解决的应用问题都是学生以前用算术方法能够解答的问题。首先,因为两种解题方法的思路不同,加上学生长时间学习用算术方法解答,习惯于算术方法的解题思路,所以学习用方程解决应用问题时,往往受到算术方法解题思路的干扰,影响学习效果。另外,传统教材一般采取先鼓励学生用算术方法解答,再讲用方程解答。而且,把用两种方法解答作为解决问题方法多样性的要求。这样一来,用方程解决问题的学习,不但不利于提高学生解决问题的能力,反而增加了学习的难度,容易造成学生思维方面的混乱。新教材根据《数学课程标准》的要求,首先降低应用题的难度,不安排用算术方法解逆思考的应用问题,不单设应用题单元,把解决应用问题和学习计算方法整合在一起,让学生在解决问题的过程中学习计算。这些应用问题都是学生熟悉的、用基本数量关系和四则运算的意义能够解答的简单问题。用方程解应用问题时,则选择一些简单逆思考的或适合用方程解答的问题,强调用x表示具体的量,通过对具体情境中数量关系的分析,找到等量关系,然后,利用等式的解决问题。这样的教材设计,一方面,减轻了学生学习用算术方法解决稍复杂问题的负担,避免了算术方法对用方程解决问题的干扰;另一方面,有利于培养学生数学思维,形成数学思维方法,有利于中、小学知识的衔接。
本单元共安排7课时。主要内容有:认识等式和方程,等式的基本性质,解简单方程以及列方程解决简单实际问题等。结合单元内容,在探索乐园中安排了鸡兔同笼问题解题思路和方法的探索活动。
本单元的教育目标是:
1、通过具体情境,了解等式和方程的意义,会用方程表示简单情境中的等量关系。
2、理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3),会列方程解决一些简单的应用问题。
3、在解方程的过程中,能进行有条理的思考,能对每一步计算和结论的合理性作出有说服力的说明。
4、具有回顾与分析解决问题过程的意识,能表达解决问题的过程,能检验方程的解是否正确。
5、感受用方程解决问题的价值,认识到许多实际问题可以借助解方程的方法来解决,获得自主解决问题的成功体验,增强学习数学的自信心。
第1课时,认识等式和方程。教材选择了天平这个直观教具,呈现了六幅不同的用天平表示物体质量关系的情境图(其中有两幅图天平两边物体的质量不同),提出了观察天平图、用式子表示天平两边物体质量关系的要求。在学生观察、按要求写式子,以及对写出的式子进行分析归纳的基础上,认识等式和方程。试一试给出了具体的式子,让学生判断哪些是方程,哪些不是方程。练一练安排了三个练习题,第1题,用三幅括线图呈现了已知数量和用x表示的未知数量的关系,让学生尝试列出方程。第2题,说明用x表示的未知量和已知量关系的文字叙述题,让学生列出方程。第3题,是把文字叙述的方程翻译成方程式的练习。教学时,有条件的可以用天平操作,或用课件演示,让学生认真观察、写出式子,再通过比较和讨论等,认识等式和方程。做练一练的题目时,要帮助学生理解x表示的具体意义。如,一本书x元,3本的总价就是3x=3x元;一辆汽车的载重量5吨,用这辆汽车运x次,可以运40吨的次数,也就是说5x=40。
第2课时,等式的基本性质。教材仍然用天平设计了两个观察小实验活动,分别探索等式两边同时加、减和同时乘、除的规律。实验一,用六幅天平图呈现出实验的方法和步骤。在用算式表示实验结果的基础上,通过观察实验的过程、算式,使学生知道等式两边同时加上或减去同一个数,等式仍然成立这一规律。实验二,用两组天平图呈现了操作方法。在用算式表示实验结果的同时,使学生知道等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立这一规律。由于等式的性质是解方程的基础和依据,教学时,教师要给予特别重视,可以用课件进行演示,或用天平操作,给学生提供认真观察、积极思考、交流自己发现的空间,切实理解等式的性质。试一试和练一练中,分别安排了在○里填运算符号,在□中填数的模拟解方程练习。练习时,要让学生看懂题目的要求,特别要说一说是怎样想的。也就是根据等式的基本性质做的,为下面用等式的基本性质解方程做准备。
第3课时,列方程解决一步计算的应用问题。教材首先用括线的方式呈现了一件上衣58元,一条裤子x元,一共92元的情境图,通过兔博士的话一条裤子多少元?把x和要求的问题联系在一起。然后,鼓励学生借助直观图列出方程,并根据等式的基本性质解方程。交流时,通过方程两边为什么都减去58?的问题,启发学生交流解方程的依据,学会解方程的思路和方法。另外,教师要注意指导解方程的书写格式,如:要先写解字,各行的等号要对齐等。接着,选择了王叔叔手写和用电脑打字的事例,以文字叙述和人物口述的方式呈现了王叔叔用电脑每分钟打120个字,电脑打字的速度是手写速度的3倍等信息,提出了王叔叔每分钟手写多少个字?的问题。这是一道关于倍数的逆思考的问题,也就是已知一个数的几倍是多少,求这个数的问题,学生第一次接触。教学时,首先要帮助学生了解王叔叔每分钟打字速度和手写速度之间的关系,然后说明列方程的方法和步骤,如:先写解字,设未知数x等,引导学生根据数量间的相等关系,列出方程。然后让学生尝试解方程,交流时,重点说一说为什么两边要除以3,依据是什么,掌握解方程的思路,即方程左边3x除以3等于x,要使方程两边结果不变,就要同时除以3,依据的是等式的基本性质。
第4课时,列方程(axb=c)解决两步计算的应用问题。教材首先设计了一个猜数游戏。以师生对话的形式,说明了游戏的方式和过程,通过让学生自己想一个数,并进行把它乘2,再加上10,等于多少的运算,教师马上猜出学生想的数这个既神秘、又有挑战性的游戏,引起学生探求猜数奥秘的兴趣,接着,通过大头蛙的话老师是列方程求出来的引出列方程解答的问题。即:设学生想的数为x,根据游戏规则和学生算出的结果列出方程,然后,学习解axb=c方程的思路和方法。最后,介绍什么是方程的解,什么是解方程这两个概念。教学时,首先教师和学生要进行实际的猜数游戏,利用游戏中生成的课程资源组织教学。不要简单地讲游戏或模仿教材上的师生对话。解决了游戏中的问题后,选择了五年级(1)班同学献爱心向山区小朋友赠书的事情,以文字和对话的方式呈现了聪聪捐了34本书,比亮亮捐书本数的2倍少4本的信息和亮亮捐多少本书?的问题。这是传统教材中已知一个数的几倍少几,求这个数的问题。解决这个问题的方程是:2x-4=34.解这个方程的思路方法与前面的相似,所以,解决这个问题的重点是找等量关系,列方程。教学时,要帮助学生了解情境中的数学信息及其含义,找出数量间的相等关系,如比亮亮捐书本书的2倍少4本就是不到亮亮捐书本书的2倍,比2倍少4本。所以,亮亮捐书的2倍减去4就等于聪聪捐书的34本。然后鼓励学生自主列出方程,并求解。交流时,结合求出的方程的解,说明检验的必要性和方法,再由学生自行检验。
第5课时,列方程解决稍复杂的相遇问题。教材以文字叙述加示意图的形式呈现了北京到上海的路程,乙车的速度,甲、乙两列火车同时从两地相对开出后到相遇所用的时间,以及甲车平均每小时行多少千米?的问题。这个问题中有多组等量关系,所以提出了找出等量关系,试着列方程解答的要求。以学生进行算法交流的形式,呈现了两种思路不同的解法。教学时,帮助学生理解题意,鼓励学生自主尝试列出方程,解决问题。另外,要给学生充分展示不同方程的机会。如果学生列出:1463-7x=873的方程,首先要给与肯定,对解答正确的给与表扬。但不作要求。提示学生,尽量不要把带未知数的量作减数。试一试选择了甲、乙两个工程队同时从两端开凿一条隧道的事例,以图文形式提供了隧道的长度、计划完成的时间、甲队计划每天完成的米数等信息,提出了乙队每天需要完成多少米?的问题。这是一道可以用相遇问题思路解决的工程问题。可以让学生自主解决问题。练一练中还安排用相遇问题解题思路解决的问题。
第6课时,列方程解决求两个未知数的应用问题。教材设计了英语书配磁带的现实问题,用文字呈现了一套英语读物和一套磁带共284元。其中磁带的价钱是英语读物价钱的3倍,这套书和磁带各多少钱?。这个问题中有两个未知量,要解决两个问题。即,磁带的价钱是多少和英语读物的价钱是多少。解决问题时,需要把书的价钱设为x,把磁带的价钱用3x表示。找到等量关系,列方程解答。先求出书的价钱,再求磁带的价钱。教学时,可画出线段图表示题中的数量关系,引导学生根据磁带价钱与读物价钱之间的关系,用x和3x分别表示两个未知量,找出数量间的相等关系。解方程时,要帮助学生理解x+3x=4x,求出英语读物的价钱后,根据磁带和英语读物的关系,求出磁带的价钱。接着,教材给出了一个数的4倍比这个数多135,这个数是多少?这是本套教材第一次出现文字题。教学时,教师要帮助学生理解文字叙述的含义,再让学生尝试列方程求解。试一试用两幅线段图,说明两组数量关系。教学时,教师要指导学生看懂图,然后尝试列方程求解。
第7课时,探索乐园,这个探索乐园的主题是解决鸡兔同笼问题,了解这一类特殊问题的解题方法。教材选择了三个问题。问题一,以对话猜数的方式给出了鸡和兔一共有22个头,70条腿的信息,提出了鸡和兔各有几只?的问题,通过蓝灵鼠还是算一算吧!要求学生自主探索,用自己喜欢的方法解决问题。教材呈现出三种解答方法,即:假设法、列表法、用方程解答。教学活动中,教师要及时引导和启发,使学生了解这类问题的解决方法,特别是假设法和列方程解答。问题二,用文字叙述给出龟和鸭共23只,它们的腿有60条的信息,提出龟和鸭各有几只?的问题。这个问题与鸡兔问题解题思路的简单应用。可以鼓励学生自主解决。问题三,用信息图呈现出两种不同洗涤液的单价,提出用100元购买这两种洗涤液,可以有几种买法?各买几瓶?的问题。这个问题,由于购买的瓶数是任意的,所以答案有多种。教学时,要给学生提供充分的自主活动空间,让他们在了解数学信息的基础上,利用已有的知识经验,解决问题。发展数学思维。